
7th Edition

March's Advanced Organic Chemistry

Reactions, Mechanisms, and Structure

Michael B. Smith

WILEY

MARCH'S ADVANCED ORGANIC CHEMISTRY

MARCH'S ADVANCED ORGANIC CHEMISTRY REACTIONS, MECHANISMS, AND STRUCTURE

SEVENTH EDITION

Michael B. Smith Professor of Chemistry

Copyright © 2013 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Smith, Michael, 1946 Oct. 17- March's Advanced Organic Chemistry : Reactions, Mechanisms, and Structure. – 7th Edition / Michael B. Smith, Professor of Chemistry.
pages cm
Includes index.
ISBN 978-0-470-46259-1 (cloth)
1. Chemistry, Organic. I. Title. II. Title: Advanced organic chemistry.
QD251.2.M37 2013
547—dc23

2012027160

Printed in the United States of America

 $10 \ 9 \ 8 \ 7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1$

CONTENTS

PREFA	CE		xiii
COMM	ION AB	BREVIATIONS	xxi
BIOGR	RAPHIC	AL STATEMENT	XXV
PART	I INTH	RODUCTION	1
1. Loca	alized Cl	nemical Bonding	3
1.A.	Covale	nt Bonding	3
		e Valence	6
	Hybrid		7
	Multipl		9
		lectron Spectroscopy	11
		nic Structures of Molecules	14 15
		negativity Moment	13
		ve and Field Effects	18
		Distances	21
	Bond A		25
	Bond E	•	27
2. Delo	calized	Chemical Bonding	31
2.A.	Molecu	lar Orbitals	32
2.B.	Bond E	nergies and Distances in Compounds Containing	
	Deloca	lized Bonds	35
		les that have Delocalized Bonds	37
		Conjugation	42
		les of Resonance	43
		sonance Effect	45
		nhibition of Resonance and the Influences of Strain	46
		Bonding. Ylids	49
2.I.		•	50
		Six-Membered Rings	54
	2.1.11. 2.I.iii.	Five, Seven, and Eight-Membered Rings Other Systems Containing Aromatic Sextets	57 62
<u>а</u> т			
2.J.	Alterna	nt and Nonalternant Hydrocarbons	63

VI CONTENTS

2.K.	Aromatic Systems with Electron Numbers other than Six	65
	2.K.i. Systems of Two Electrons	66
	2.K.ii. Systems of Four Electrons: Antiaromaticity	67
	2.K.iii. Systems of Eight Electrons	71
	2.K.iv. Systems of Ten Electrons	72
	2.K.v. Systems of more than Ten Electrons: $4n + 2$ Electrons	74
	2.K.vi. Systems of more than 10 Electrons: 4 <i>n</i> Electrons	79
2.L.	Other Aromatic Compounds	82
	Hyperconjugation	85
2.N.	Tautomerism	89
	2.N.i. Keto–Enol Tautomerism	89
	2.N.ii. Other Proton-Shift Tautomerism	92
3. Bon	ding Weaker Than Covalent	96
	Hydrogen Bonding	96
	$\pi - \pi$ Interactions	103
3.C.	Addition Compounds	104
	3.C.i. Electron Donor–Acceptor Complexes	104
	3.C.ii. Crown Ether Complexes and Cryptates	108
	3.C.iii. Inclusion Compounds	113
	3.C.iv. Cyclodextrins	116
	Catenanes and Rotaxanes	118
3.E.	Cucurbit[n]Uril-Based Gyroscane	121
4. Ster	eochemistry and Conformation	122
4.A.	Optical Activity and Chirality	122
	4.A.i. Dependence of Rotation on Conditions of Measurement	124
4.B.	What Kinds of Molecules Display Optical Activity?	125
	The Fischer Projection	136
	Absolute Configuration	137
	4.D.i. The CAHN–INGOLD–PRELOG System	138
	4.D.ii. Methods of Determining Configuration	141
4.E.	The Cause of Optical Activity	145
	Molecules with more than One Stereogenic Center	146
	Asymmetric Synthesis	149
	Methods of Resolution	154
4.I.	Optical Purity	160
4.J.	cis-trans Isomerism	162
	4.J.i. <i>cis-trans</i> Isomerism Resulting from Double Bonds	162
	4.J.ii. <i>cis–trans</i> Isomerism of Monocyclic Compounds	165
	4.J.iii. <i>cis-trans</i> Isomerism of Fused and Bridged Ring Systems	167
4.K.	Out–In Isomerism	168
4.L.	Enantiotopic and Diastereotopic Atoms, Groups, and Faces	170
4 M	Stereospecific and Stereoselective Syntheses	173
	· ·	175
	Conformational Analysis	173

		4.N.ii. 4.N.iii. 4.N.iv.	Conformation in Six-Membered Rings Conformation in Six-Membered Rings Containing Heteroatoms Conformation in Other Rings	180 186 188
	10		ar Mechanics	190
		STRAIN		190
	7.1.	4.P.i.	Strain in Small Rings	192
		4.P.ii.	Strain in Other Rings	195
			Unsaturated Rings	201
		4.P.iv.		204
5.	Carb	ocations	, Carbanions, Free Radicals, Carbenes, and Nitrenes	208
	5.A.	Carboca	tions	208
		5.A.i.	Nomenclature	208
			Stability and Structure of Carbocations	209
			The Generation and Fate of Carbocations	218
	5.B.	Carbani	ons	221
		5.B.i.	Stability and Structure	221
		5.B.ii.	The Structure of Organometallic Compounds	228
		5.B.iii.	The Generation and Fate of Carbanions	233
	5.C.	Free Ra	dicals	234
		5.C.i.	Stability and Structure	234
		5.C.ii.		245
		5.C.iii.	Radical Ions	248
	5.D.	Carbene	S	249
		5.D.i.	Stability and Structure	249
		5.D.ii.	The Generation and Fate of Carbenes	253
	5.E.	Nitrenes		257
6.	Mecl	nanisms	and Methods of Determining them	261
	6.A.	Types of	f Mechanism	261
			f Reaction	262
	6.C.	Thermo	dynamic Requirements for Reaction	264
			Requirements for Reaction	266
			dwin Rules for Ring Closure	270
			and Thermodynamic Control	271
	0.0.		nmond Postulate	272
			opic Reversibility	273
	6.I.	Marcus Mathad	•	273
	6.J.		s of Determining Mechanisms	275
		6.J.i.	Identification of Products	275
		6.J.ii. 6.J.iii.	Determination of the Presence of an Intermediate	275
		6.J.111. 6.J.iv.	The Study of Catalysis Isotopic Labeling	277 277
		6.J.v.	Stereochemical Evidence	277
		6.J.vi.	Kinetic Evidence	278
		6.J.vii.	Isotope Effects	285
			*	

7. Irradiation Processes in Organic Chemistry	289
7.A. Photochemistry	289
7.A.i. Excited States and the Ground State	289
7.A.ii. Singlet and Triplet States: "Forbidden" Transitions	291
7.A.iii. Types of Excitation	292
7.A.iv. Nomenclature and Properties of Excited States	294
7.A.v. Photolytic Cleavage	295
7.A.vi. The Fate of the Excited Molecule: Physical Processes	296
7.A.vii. The Fate of the Excited Molecule: Chemical Processes	301
7.A.viii. The Determination of Photochemical Mechanisms	306
7.B. Sonochemistry	307
7.C. Microwave Chemistry	309
8. Acids and Bases	312
8.A. Brønsted Theory	312
8.A.i. Brønsted Acids	313
8.A.ii. Brønsted Bases	320
8.B. The Mechanism of Proton-Transfer Reactions	323
8.C. Measurements of Solvent Acidity	324
8.D. Acid and Base Catalysis	327
8.E. Lewis Acids and Bases	330
8.E.i. Hard–Soft Acids–Bases	331
8.F. The Effects of Structure on the Strengths of Acids and Bases	334
8.G. The Effects of the Medium on Acid and Base Strength	343
9. Effects of Structure and Medium on Reactivity	347
9.A. Resonance and Field Effects	347
9.B. Steric Effects	349
9.C. Quantitative Treatments of the Effect of Structure on Reactivity	352
9.D. Effect of Medium on Reactivity and Rate	361
9.D.i. High Pressure	362
9.D.ii. Water and Other Non-Organic Solvents	363
9.D.iii. Ionic Solvents	364
9.D.iv. Solventless Reactions	366
PART II INTRODUCTION	367
10. Aliphatic Substitution, Nucleophilic and Organometallic	373
10.A. Mechanisms	373
10.A.i. The S_N^2 Mechanism	373
10.A.ii. The $S_N 1$ Mechanism	379
10.A.iii. Ion Pairs in the S_N 1 Mechanism	383
10.A.iv. Mixed S_N1 and S_N2 Mechanisms	387
10.B. SET Mechanisms	389

10.C.	The Neig	ghboring-Group Mechanism	391
	10.C.i.	Neighboring-Group Participation by π and σ Bonds:	
		Nonclassical Carbocations	394
10.D.	The S _N i	Mechanism	408
10.E.	Nucleop	hilic Substitution at an Allylic Carbon: Allylic	
	Rearrang		409
10.F.		hilic Substitution at an Aliphatic Trigonal Carbon:	
		ahedral Mechanism	413
10.G.	Reactivi	-	417
	10.G.i.	The Effect of Substrate Structure	417
	10.G.ii.	C 1	426
	10.G.iii.	E I	432
	10.G.iv. 10.G.v.		435 442
		Influencing Reactivity by External Means	442 445
		Ambident (Bidentant) Nucleophiles: Regioselectivity	446
		i. Ambident Substrates	450
10 H	Reaction		451
10.11		Oxygen Nucleophiles	451
		Attack by OR at an Alkyl Carbon	459
		Sulfur Nucleophiles	475
		Nitrogen Nucleophiles	481
		Halogen Nucleophiles	498
	10 H vi	Carbon Nucleophiles	510
	10.11. 11.		
	10.11.11		
11. Aro		bstitution, Electrophilic	569
		bstitution, Electrophilic	
	matic Su l . Mechani	bstitution, Electrophilic	569
	matic Su l Mechani 11.A.i.	bstitution, Electrophilic	569 569
11.A	matic Sul Mechani 11.A.i. 11.A.ii.	bstitution, Electrophilic sms The Arenium Ion Mechanism	569 569 570
11.A	matic Sul Mechani 11.A.i. 11.A.ii. Orientati	bstitution, Electrophilic sms The Arenium Ion Mechanism The S _E 1 Mechanism ion and Reactivity	569 569 570 576
11.A	matic Sul Mechani 11.A.i. 11.A.ii. Orientati	bstitution, Electrophilic sms The Arenium Ion Mechanism The S _E 1 Mechanism	569 569 570 576
11.A	matic Sul Mechani 11.A.i. 11.A.ii. Orientati 11.B.i.	bstitution, Electrophilic sms The Arenium Ion Mechanism The S_E1 Mechanism ion and Reactivity Orientation and Reactivity in Monosubstituted	569 569 570 576 576
11.A	matic Sul Mechani 11.A.i. 11.A.ii. Orientati 11.B.i. 11.B.ii. 11.B.iii.	bstitution, Electrophilic sms The Arenium Ion Mechanism The S _E 1 Mechanism ion and Reactivity Orientation and Reactivity in Monosubstituted Benzene Rings The Ortho/Para Ratio Ipso Attack	569 570 576 576 576
11.A	matic Sul Mechani 11.A.i. 11.A.ii. Orientati 11.B.i. 11.B.ii. 11.B.ii. 11.B.ii.	bstitution, Electrophilic sms The Arenium Ion Mechanism The S _E 1 Mechanism ion and Reactivity Orientation and Reactivity in Monosubstituted Benzene Rings The Ortho/Para Ratio Ipso Attack Orientation in Benzene Rings with More Than One Substituent	569 569 570 576 576 576 576
11.A	matic Sul Mechani 11.A.i. 11.A.ii. Orientati 11.B.i. 11.B.ii. 11.B.ii. 11.B.ii.	bstitution, Electrophilic sms The Arenium Ion Mechanism The S _E 1 Mechanism ion and Reactivity Orientation and Reactivity in Monosubstituted Benzene Rings The Ortho/Para Ratio Ipso Attack	569 570 576 576 576 580 581
11.A. 11.B. 11.C.	matic Sul Mechani 11.A.i. 11.A.ii. Orientati 11.B.i. 11.B.ii. 11.B.ii. 11.B.iv. 11.B.v. Quantita	bstitution, Electrophilic sms The Arenium Ion Mechanism The S _E 1 Mechanism fon and Reactivity Orientation and Reactivity in Monosubstituted Benzene Rings The Ortho/Para Ratio Ipso Attack Orientation in Benzene Rings with More Than One Substituent Orientation in Other Ring Systems tive Treatments of Reactivity in the Substrate	569 570 576 576 576 580 581 583
11.A. 11.B. 11.C.	matic Sul Mechani 11.A.i. 11.A.ii. Orientati 11.B.i. 11.B.ii. 11.B.ii. 11.B.iv. 11.B.v. Quantita A Quant	bstitution, Electrophilic sms The Arenium Ion Mechanism The S_E1 Mechanism ton and Reactivity Orientation and Reactivity in Monosubstituted Benzene Rings The Ortho/Para Ratio Ipso Attack Orientation in Benzene Rings with More Than One Substituent Orientation in Other Ring Systems tive Treatments of Reactivity in the Substrate itative Treatment of Reactivity of the Electrophile: The Selectivity	569 570 576 576 576 580 581 583 584 586
11.A. 11.B. 11.C. 11.D.	matic Sul Mechani 11.A.i. 11.A.ii. Orientati 11.B.i. 11.B.ii. 11.B.ii. 11.B.iv. 11.B.v. Quantita A Quant Relation	bstitution, Electrophilic sms The Arenium Ion Mechanism The S_E1 Mechanism ion and Reactivity Orientation and Reactivity in Monosubstituted Benzene Rings The Ortho/Para Ratio Ipso Attack Orientation in Benzene Rings with More Than One Substituent Orientation in Other Ring Systems tive Treatments of Reactivity in the Substrate itative Treatment of Reactivity of the Electrophile: The Selectivity ship	569 570 576 576 576 580 581 583 584 588 588
11.A. 11.B. 11.C. 11.D. 11.E.	matic Sul Mechani 11.A.i. 11.A.ii. Orientati 11.B.i. 11.B.ii. 11.B.ii. 11.B.iv. 11.B.v. Quantita A Quant Relation The Effe	bstitution, Electrophilic sms The Arenium Ion Mechanism The S_E1 Mechanism ion and Reactivity Orientation and Reactivity in Monosubstituted Benzene Rings The Ortho/Para Ratio Ipso Attack Orientation in Benzene Rings with More Than One Substituent Orientation in Other Ring Systems tive Treatments of Reactivity in the Substrate itative Treatment of Reactivity of the Electrophile: The Selectivity ship ct of the Leaving Group	569 570 576 576 576 580 581 583 584 588 588 588
11.A. 11.B. 11.C. 11.D. 11.E.	matic Sul Mechani 11.A.i. 11.A.ii. Orientati 11.B.i. 11.B.ii. 11.B.ii. 11.B.iv. 11.B.iv. 11.B.v. Quantita A Quant Relation The Effe Reaction	bstitution, Electrophilic sms The Arenium Ion Mechanism The S _E 1 Mechanism ton and Reactivity Orientation and Reactivity in Monosubstituted Benzene Rings The Ortho/Para Ratio Ipso Attack Orientation in Benzene Rings with More Than One Substituent Orientation in Other Ring Systems tive Treatments of Reactivity in the Substrate itative Treatment of Reactivity of the Electrophile: The Selectivity ship ct of the Leaving Group Is	569 570 576 576 576 580 581 583 584 588 588
11.A. 11.B. 11.C. 11.D. 11.E.	matic Sul Mechani 11.A.i. 11.A.ii. Orientati 11.B.i. 11.B.ii. 11.B.ii. 11.B.iv. 11.B.v. Quantita A Quant Relation The Effe	bstitution, Electrophilic sms The Arenium Ion Mechanism The S _E 1 Mechanism Ton and Reactivity Orientation and Reactivity in Monosubstituted Benzene Rings The Ortho/Para Ratio Ipso Attack Orientation in Benzene Rings with More Than One Substituent Orientation in Other Ring Systems tive Treatments of Reactivity in the Substrate itative Treatment of Reactivity of the Electrophile: The Selectivity ship ct of the Leaving Group ts Hydrogen as the Leaving Group in Simple	569 570 576 576 576 580 581 583 584 586 588 591 591
11.A. 11.B. 11.C. 11.D. 11.E.	matic Sul Mechani 11.A.i. 11.A.ii. Orientati 11.B.i. 11.B.ii. 11.B.iv. 11.B.v. Quantita A Quant Relation The Effe Reaction 11.F.i.	bstitution, Electrophilic sms The Arenium Ion Mechanism The S _E 1 Mechanism The S _E 1 Mechanism ton and Reactivity Orientation and Reactivity in Monosubstituted Benzene Rings The Ortho/Para Ratio Ipso Attack Orientation in Benzene Rings with More Than One Substituent Orientation in Other Ring Systems tive Treatments of Reactivity in the Substrate itative Treatment of Reactivity of the Electrophile: The Selectivity ship ct of the Leaving Group Is Hydrogen as the Leaving Group in Simple Substitution Reactions	569 570 576 576 576 580 581 583 584 588 588 588
11.A. 11.B. 11.C. 11.D. 11.E.	matic Sul Mechani 11.A.i. 11.A.ii. Orientati 11.B.i. 11.B.ii. 11.B.ii. 11.B.iv. 11.B.iv. 11.B.v. Quantita A Quant Relation The Effe Reaction	bstitution, Electrophilic sms The Arenium Ion Mechanism The S _E 1 Mechanism The S _E 1 Mechanism ion and Reactivity Orientation and Reactivity in Monosubstituted Benzene Rings The Ortho/Para Ratio Ipso Attack Orientation in Benzene Rings with More Than One Substituent Orientation in Other Ring Systems tive Treatments of Reactivity in the Substrate itative Treatment of Reactivity of the Electrophile: The Selectivity ship ct of the Leaving Group IS Hydrogen as the Leaving Group in Simple Substitution Reactions Hydrogen as the Leaving Group in Rearrangement	569 570 576 576 576 580 581 583 584 588 584 588 591 591 591
11.A. 11.B. 11.C. 11.D. 11.E.	matic Sul Mechani 11.A.i. 11.A.ii. Orientati 11.B.i. 11.B.ii. 11.B.ii. 11.B.iv. 11.B.v. Quantita A Quant Relation The Effe Reaction 11.F.i. 11.F.ii.	bstitution, Electrophilic sms The Arenium Ion Mechanism The S _E 1 Mechanism The S _E 1 Mechanism ton and Reactivity Orientation and Reactivity in Monosubstituted Benzene Rings The Ortho/Para Ratio Ipso Attack Orientation in Benzene Rings with More Than One Substituent Orientation in Other Ring Systems tive Treatments of Reactivity in the Substrate itative Treatment of Reactivity of the Electrophile: The Selectivity ship ct of the Leaving Group Is Hydrogen as the Leaving Group in Simple Substitution Reactions	569 570 576 576 576 580 581 583 584 586 588 591 591

X CONTENTS

12. Aliphatic, Al and Organo	lkenyl, and Alkynyl Substitution, Electrophilic metallic	649
12.A. Mechan	isms	650
12.A.i.	Bimolecular Mechanisms: $S_E 2$ and $S_E i$	650
	The $S_E 1$ Mechanism	654
	. Electrophilic Substitution Accompanied by Double-Bond Shifts	657
12.A.iv.	Other Mechanisms	658
12.B. Reactiv	ity	658
12.C. Reaction	ns	660
12.C.i.	Hydrogen as Leaving Group	660
	Metals as Leaving Groups	698
	Halogen as Leaving Group	713
	Carbon Leaving Groups	718
12.C.v.	Electrophilic Substitution at Nitrogen	727
13. Aromatic Su	bstitution: Nucleophilic and Organometallic	732
13.A. Mechan	isms	732
13.A.i.	The S _N Ar Mechanism	732
	The S _N 1 Mechanism	735
	. The Benzyne Mechanism	737
	The S _{RN} 1 Mechanism	739
	Other Mechanisms	740
13.B. Reactiv	•	741
	The Effect of Substrate Structure	741
	The Effect of the Leaving Group	744
	The Effect of the Attacking Nucleophile	745
13.C. Reaction		745
	All Leaving Groups Except Hydrogen and N_2^+	746
	Hydrogen as Leaving Group	784
	Nitrogen as Leaving Group	788
13.C.iv.	Rearrangements	797
14. Substitution	Reactions: Radical	803
14.A. Mechan	isms	803
14.A.i.	Radical Mechanisms in General	803
14.A.ii.	Free Radical Substitution Mechanisms	807
14.A.iii	. Mechanisms at an Aromatic Substrate	809
14.A.iv.	Neighboring-Group Assistance in Free Radical Reactions	810
14.B. Reactiv	ity	812
14.B.i.	Reactivity for Aliphatic Substrates	812
14.B.ii.	Reactivity at a Bridgehead	817
	Reactivity in Aromatic Substrates	818
	Reactivity in the Attacking Radical	819
14.B.v.	The Effect of Solvent on Reactivity	820

14.C.	Reaction	15	821
	14.C.i.	Hydrogen as a Leaving Group	821
	14.C.ii.	N ₂ as Leaving Group	846
		Metals as Leaving Groups	849
		Halogen as Leaving Group	851
		Sulfur as Leaving Group	851
	14.C.vi.	Carbon as Leaving Group	853
15. Add	ition to C	Carbon–Carbon Multiple Bonds	859
15.A.	Mechani	sms	859
		Electrophilic Addition	859
		Nucleophilic Addition	865
		Free Radical Addition	867
		Cyclic Mechanisms	869
	15.A.v.	Addition to Conjugated Systems	869
15.B.	Orientati	ion and Reactivity	871
	15.B.i.	Reactivity	871
		Orientation	874
	15.B.iii.	Stereochemical Orientation	877
	15.B.iv.	Addition to Cyclopropane Rings	879
15.C.	Reaction	IS	881
	15.C.i.	Isomerization of Double and Triple Bonds	881
	15.C.ii.	Reactions in which Hydrogen Adds to One Side	883
	15 C iii	Reactions in which Hydrogen Adds to Neither Side	981
	15.C.m.	Reactions in which Hydrogen Adds to Nether Side	901
		Cycloaddition Reactions	1014
16. Add	15.C.iv.		
	15.C.iv. ition to C	Cycloaddition Reactions	1014
	15.C.iv. ition to C	Cycloaddition Reactions Carbon–Hetero Multiple Bonds sm and Reactivity	1014 1067
	15.C.iv. ition to C Mechani	Cycloaddition Reactions	1014 1067
16.A.	15.C.iv. ition to C Mechani	Cycloaddition Reactions Carbon–Hetero Multiple Bonds sm and Reactivity Nucleophilic Substitution at an Aliphatic Trigonal Carbon: The Tetrahedral Mechanism	1014 1067 1067 1069
16.A.	15.C.iv. ition to C Mechani 16.A.i. Reaction	Cycloaddition Reactions Carbon–Hetero Multiple Bonds sm and Reactivity Nucleophilic Substitution at an Aliphatic Trigonal Carbon: The Tetrahedral Mechanism	1014 1067 1067
16.A.	15.C.iv. ition to C Mechani 16.A.i.	Cycloaddition Reactions Carbon–Hetero Multiple Bonds sm and Reactivity Nucleophilic Substitution at an Aliphatic Trigonal Carbon: The Tetrahedral Mechanism	1014 1067 1067 1069 1075
16.A.	15.C.iv. ition to C Mechani 16.A.i. Reaction 16.B.i.	Cycloaddition Reactions Carbon–Hetero Multiple Bonds sm and Reactivity Nucleophilic Substitution at an Aliphatic Trigonal Carbon: The Tetrahedral Mechanism s Reactions in which Hydrogen or a Metallic Ion Adds to the Heteroatom	1014 1067 1067 1069
16.A.	15.C.iv. ition to C Mechani 16.A.i. Reaction 16.B.i. 16.B.ii.	Cycloaddition Reactions Carbon–Hetero Multiple Bonds sm and Reactivity Nucleophilic Substitution at an Aliphatic Trigonal Carbon: The Tetrahedral Mechanism s Reactions in which Hydrogen or a Metallic Ion Adds to the	1014 1067 1067 1069 1075 1075
16.A.	15.C.iv. ition to C Mechani 16.A.i. Reaction 16.B.i. 16.B.ii. 16.B.iii.	Cycloaddition Reactions Carbon–Hetero Multiple Bonds sm and Reactivity Nucleophilic Substitution at an Aliphatic Trigonal Carbon: The Tetrahedral Mechanism s Reactions in which Hydrogen or a Metallic Ion Adds to the Heteroatom Acyl Substitution Reactions	1014 1067 1067 1069 1075 1075 1189
16.A.	15.C.iv. ition to C Mechani 16.A.i. Reaction 16.B.i. 16.B.ii. 16.B.iii. 16.B.iy.	Cycloaddition Reactions Carbon–Hetero Multiple Bonds sm and Reactivity Nucleophilic Substitution at an Aliphatic Trigonal Carbon: The Tetrahedral Mechanism s Reactions in which Hydrogen or a Metallic Ion Adds to the Heteroatom Acyl Substitution Reactions Reactions in which Carbon Adds to the Heteroatom	1014 1067 1067 1069 1075 1075 1189 1239
16.A. 16.B.	15.C.iv. ition to C Mechani 16.A.i. Reaction 16.B.i. 16.B.ii. 16.B.iii. 16.B.iy.	Cycloaddition Reactions Carbon–Hetero Multiple Bonds sm and Reactivity Nucleophilic Substitution at an Aliphatic Trigonal Carbon: The Tetrahedral Mechanism s Reactions in which Hydrogen or a Metallic Ion Adds to the Heteroatom Acyl Substitution Reactions Reactions in which Carbon Adds to the Heteroatom Addition to Isocyanides	1014 1067 1069 1075 1075 1189 1239 1246
16.A. 16.B. 17. Elim	15.C.iv. ition to C Mechani 16.A.i. Reaction 16.B.i. 16.B.ii. 16.B.iii. 16.B.iv. 16.B.v. iinations	Cycloaddition Reactions Carbon–Hetero Multiple Bonds sm and Reactivity Nucleophilic Substitution at an Aliphatic Trigonal Carbon: The Tetrahedral Mechanism s Reactions in which Hydrogen or a Metallic Ion Adds to the Heteroatom Acyl Substitution Reactions Reactions in which Carbon Adds to the Heteroatom Addition to Isocyanides	1014 1067 1069 1075 1075 1189 1239 1246 1248
16.A. 16.B. 17. Elim	15.C.iv. ition to C Mechani 16.A.i. Reaction 16.B.i. 16.B.ii. 16.B.iii. 16.B.iv. 16.B.v. iinations	Cycloaddition Reactions Carbon–Hetero Multiple Bonds sm and Reactivity Nucleophilic Substitution at an Aliphatic Trigonal Carbon: The Tetrahedral Mechanism s Reactions in which Hydrogen or a Metallic Ion Adds to the Heteroatom Acyl Substitution Reactions Reactions in which Carbon Adds to the Heteroatom Addition to Isocyanides Nucleophilic Substitution at a Sulfonyl Sulfur Atom	1014 1067 1069 1075 1075 1189 1239 1246 1248 1253
16.A. 16.B. 17. Elim	15.C.iv. ition to C Mechani 16.A.i. Reaction 16.B.i. 16.B.ii. 16.B.iii. 16.B.iv. 16.B.v. hinations Mechani 17.A.i.	Cycloaddition Reactions Carbon–Hetero Multiple Bonds sm and Reactivity Nucleophilic Substitution at an Aliphatic Trigonal Carbon: The Tetrahedral Mechanism s Reactions in which Hydrogen or a Metallic Ion Adds to the Heteroatom Acyl Substitution Reactions Reactions in which Carbon Adds to the Heteroatom Addition to Isocyanides Nucleophilic Substitution at a Sulfonyl Sulfur Atom	1014 1067 1069 1075 1075 1189 1239 1246 1248 1253
16.A. 16.B. 17. Elim	15.C.iv. ition to C Mechani 16.A.i. Reaction 16.B.ii. 16.B.ii. 16.B.iv. 16.B.v. iinations Mechani 17.A.i. 17.A.ii.	Cycloaddition Reactions Carbon–Hetero Multiple Bonds sm and Reactivity Nucleophilic Substitution at an Aliphatic Trigonal Carbon: The Tetrahedral Mechanism as Reactions in which Hydrogen or a Metallic Ion Adds to the Heteroatom Acyl Substitution Reactions Reactions in which Carbon Adds to the Heteroatom Addition to Isocyanides Nucleophilic Substitution at a Sulfonyl Sulfur Atom sms and Orientation The E2 Mechanism	1014 1067 1067 1069 1075 1075 1189 1239 1246 1248 1253 1253 1254
16.A. 16.B. 17. Elim	15.C.iv. ition to C Mechani 16.A.i. Reaction 16.B.ii. 16.B.ii. 16.B.iv. 16.B.iv. 16.B.v. iinations Mechani 17.A.i. 17.A.ii. 17.A.iii.	Cycloaddition Reactions Carbon–Hetero Multiple Bonds sm and Reactivity Nucleophilic Substitution at an Aliphatic Trigonal Carbon: The Tetrahedral Mechanism as Reactions in which Hydrogen or a Metallic Ion Adds to the Heteroatom Acyl Substitution Reactions Reactions in which Carbon Adds to the Heteroatom Addition to Isocyanides Nucleophilic Substitution at a Sulfonyl Sulfur Atom sms and Orientation The E2 Mechanism	1014 1067 1067 1069 1075 1075 1189 1239 1246 1248 1253 1254 1261
16.A. 16.B. 17. Elim	15.C.iv. ition to C Mechani 16.A.i. Reaction 16.B.ii. 16.B.ii. 16.B.iv. 16.B.iv. 16.B.v. iinations Mechani 17.A.i. 17.A.ii. 17.A.iy.	Cycloaddition Reactions Carbon–Hetero Multiple Bonds sm and Reactivity Nucleophilic Substitution at an Aliphatic Trigonal Carbon: The Tetrahedral Mechanism as Reactions in which Hydrogen or a Metallic Ion Adds to the Heteroatom Acyl Substitution Reactions Reactions in which Carbon Adds to the Heteroatom Addition to Isocyanides Nucleophilic Substitution at a Sulfonyl Sulfur Atom sms and Orientation The E2 Mechanism The E1 Mechanism	1014 1067 1069 1075 1075 1189 1239 1246 1248 1253 1254 1261 1262

-	HOR IN		1631 1835
INDEX	ES		
APPEN	DIX B:	CLASSIFICATION OF REACTIONS BY TYPE OF COMPOUNDS SYNTHESIZED	1605
APPEN	DIX A:	THE LITERATURE OF ORGANIC CHEMISTRY	1569
	19.B.ii.	Reductions	1497
		Oxidations	1437
19.B.	Reaction	15	1436
19.A.	Mechani	isms	1434
19. Oxid	lations a	nd Reductions	1433
	18.F.ii.	Non-1,2 Rearrangements	1380
		1,2-Rearrangements	1338
18.F.	Reaction	18	1337
		hilic Rearrangements	1337
		Rearrangements	1337
		dical Rearrangements	1331
18 P		Nucleophilic Rearrangements	1330
		Migratory Aptitudes Memory Effects	1328 1330
		The Actual Nature of the Migration	1324
		Nucleophilic Rearrangements	1322
18.A.	Mechani		1322
	rrangem		1321
	1 / .F.V1.	Extrusion Reactions	1316
		Reactions in which N=N Bonds are Formed	1315
		Reactions in which C=O Bonds are Formed	1314
		Reactions in which $C \equiv N$ or $C = N$ Bonds are Formed	1310
		Fragmentations	1307
	17.F.i.	Reactions in which $C=C$ and $C\equiv C$ Bonds are Formed	1282
17.F.	Reaction		1282
		1,4-Conjugate Eliminations	1281
		Mechanisms Orientation in Pyrolytic Eliminations	1278 1281
17.E.		isms and Orientation in Pyrolytic Eliminations	
17 E			1277 1278
		Effect of the Leaving Group Effect of the Medium	1276
		Effect of the Attacking Base	1276
	17.D.i.	Effect of Substrate Structure	1274
	Reactivi		1274
17.C.	Stereoch	nemistry of the Double Bond	1273

This seventh edition of *March's Advanced Organic Chemistry* has been thoroughly updated to include new advances in areas of Organic chemistry published between 2005 and 2010. Every topic retained from the sixth edition has been brought up to date if there was activity in that area during that five year period. Changes also include a significant rewrite of most of the book. More than 5500 new references have been added for work published since 2005. As with the sixth edition, many older references were deleted to make room for new ones, and in cases where a series of papers by the same principal author were cited, all but the most recent were deleted. The older citations are usually found by referring to the more recent publication(s). Many of the figures relating to molecular orbitals dated to the 1960s. In all cases possible, they have been replaced by molecular orbitals drawings using Spartan software from Wavefunction, Inc. The fundamental structure of the seventh edition is essentially the same as that of all previous ones.

The goal, as in previous editions is to give equal weight to the three fundamental aspects of the study of organic chemistry: reactions, mechanisms, and structure. A student who has completed a course based on this book should be able to approach the literature directly, with a sound knowledge of modern organic chemistry. Major special areas of organic chemistry: terpenes, carbohydrates, proteins, many organometallic reagents, combinatorial chemistry, polymerization and electrochemical reactions, steroids, and so on, have been treated lightly or ignored completely. The use of this book in the first year of graduate study should help master the fundamentals. It is hoped that this book will lead a student to consult the many excellent books and review articles cited for various topics in order to understand the subject in more detail. Indeed, many of these topics are so vast, they cannot be explained completely in this book.

The organization is based on reaction types, and a relatively few principles suffice to explain nearly all of them despite the large number of organic reactions. Accordingly, the reactions-mechanisms section of this book (Part II) is divided into 10 chapters (10–19), each concerned with a different type of reaction. In the first part of each chapter, the appropriate basic mechanisms are discussed along with considerations of reactivity and orientation, while the second part consists of numbered sections devoted to individual reactions, where the scope and the mechanism of each reaction are discussed. Numbered sections are used for the reactions and are set in boldface. Since the methods for the preparation of individual classes of compounds (ketones, nitriles, etc.) are not treated all in one place, an updated and revised index has been provided (Appendix B) by use of which the synthesis of a given type of compound will be found. It is important to note that the numbers for each reaction in the 7th edition. For this reason, a correlation table is included at the end of this Preface that directly correlates the sections found in the 5th edition with the new ones in both the 6th and 7th editions.

The structure of organic compounds is discussed in Chapters 1–5 (Part I). This section provides a necessary background for understanding mechanisms and is also important in its own right. The discussion begins with chemical bonding (Chapt. 1) and ends with a chapter on stereochemistry (Chapt. 4). Two chapters follow (Chapt 6–7) on reaction mechanisms in general, one for ordinary reactions and the other for photochemical reactions. Part 1 concludes with two more chapters (Chapt 8 and 9) that give further background to the study of mechanisms.

The IUPAC names for many organic transformations are included, first introduced in the 3rd edition. Since then the rules have been broadened to cover additional cases; hence more such names are given in this edition. Furthermore, International Union of Pure and Applied Chemistry (IUPAC) has now published a system for designating reaction mechanisms, and some of the simpler designations are included.

Appendix A is devoted to the literature of organic chemistry.

In treating subjects as broad as structure, reactions, and mechanisms of organic chemistry, it is impossible to cover each topic in great depth, and this would not be desirable even if possible. This book is intended to point the reader to the primary literature of the areas it covers. To this end, there are >20,000 references to original papers. Secondary literature sources including reviews, books, and monographs have been included as well. Appendix A provides a brief introduction to using computer-based search engines (e.g., *Reaxys*[®] and *SciFinder*[®]).

Although basically designed as a reference text for a one-year course on the graduate level, this book can also be used in advanced undergraduate courses, but only after completion of a one-year course in organic chemistry. A one year course in both inorganic and physical chemistry would be most helpful. It has been my experience that students who have completed the first-year courses often have a hazy recollection of the material and greatly profit from a representation of the material if it is easily accessible. The material in the first nine chapters, particularly Chapters 1, 2, 4, 6, and 8 may be helpful for reviewing such material when this book is used in connection with a course.

This book is probably most valuable as a reasonably up-to-date reference work. Students preparing for qualifying examinations and practicing organic chemists will find that Part II contains a survey of what is known about the mechanism and scope of a large number of reactions, arranged in an orderly manner based on reaction type and on which bonds are broken and formed.

For units of energy, IUPAC mandates joules, and many journals do use this unit exclusively. However, organic chemists who publish in United States journals commonly use calories. Virtually all energy values are presented in both calories and joules. Although IUPAC does not recommend angstrom units for bond distances, but rather picometers (pm), a vast number of bond distances published in the literature are in angstrom units, and this book therefore uses angstrom units.

I would like to acknowledge the contributions of those chemists cited and thanked by Professor March in the first-four editions, and those I thanked in the 5th and 6th editions. This book would not be possible without their contributions. For the 7th edition, I thank Lou Allinger for pointing out the deficiencies in the hyperconjugation section, and graciously helping me write the new section appearing in this new edition. I thank Warren Hehre for his invaluable help in calculating and presenting the molecular orbital drawings using Spartan. I also thank Adrian Shell (Elsevier) for facilitating the transfer of material relating to the program *Reaxys*, discussed in Appendix A. I thank the many people who have contributed comments or have pointed out errors in the 6th edition that were

invaluable to putting together the 7th edition. I thank Warren Hehre and Sean Ohlinger of Wavefunction, Inc., Irvine, CA (www.wavefun.com) for providing Spartan 10 Macintosh (v. 1.0.1), allowing the incorporation of Spartan models for selected molecules and intermediates. All structures and line drawings in this book were done using ChemDraw[®] Ultra 11.0.1 (350440), graciously provided by CambridgeSoft Corporation, Cambridge, MA (www.cambridgesoft.com).

Special thanks are due to the Interscience division of John Wiley & Sons and to Jonathan Rose. Special thanks are also given to Kristen Parrish and Amanda Amanullah, at Wiley for their fine work as editors in turning the manuscript into the finished book as well as Sanchari Sil of Thomson Digital. I also thank Jeanette Stiefel for an excellent job of copy editing the manuscript.

With gratitude, I acknowledge the work of Jerry March, upon whose work this new edition is built, and who is responsible for the concept of this book and for carrying it through four very successful editions. I used Jerry's book as a student and it is an honor to continue this tradition.

I encourage those who read and use the 7th edition to contact me directly with comments, errors, and with publications that might be appropriate for future editions. I hope that this new edition will due justice to the tradition that Professor March began with the first edition.

My Email address is	michael.smith@uconn.edu
and my homepage is	http://orgchem.chem.uconn.edu/home/mbs-home.html

Finally, I want to thank my wife Sarah for her patience and understanding during the preparation of this manuscript. I also thank my son Steven for his support. Without their support, this work would not have been possible.

MICHAEL B. SMITH May, 2012

Correlation Table 5th edition \rightarrow 7th edition Reactions

10-1 ightarrow 10-1	10-18 ightarrow 10-14	$\textbf{10-35} \rightarrow \textbf{16-68}$
10-2 ightarrow 10-2	$10-19 \rightarrow 10-15$	$\textbf{10-36} \rightarrow \textbf{10-24}$
10-3 ightarrow 10-3	10-20 ightarrow 10-16	$\textbf{10-37} \rightarrow \textbf{10-25}$
10-4 ightarrow 10-4	10-21 ightarrow 16-61	$\textbf{10-38} \rightarrow \textbf{10-26}$
10-5 ightarrow 10-5	10-22 ightarrow 16-62	$\textbf{10-39} \rightarrow \textbf{16-69}$
10-6 ightarrow 10-6	10-23 ightarrow 16-63	$\textbf{10-40} \rightarrow \textbf{10-27}$
10-7 ightarrow 10-7	10-24 ightarrow 16-64	$\textbf{10-41} \rightarrow \textbf{10-28}$
10-8 ightarrow 16-57	10-25 ightarrow 16-65	$\textbf{10-42} \rightarrow \textbf{10-29}$
10-9 ightarrow 16-58	10-26 ightarrow 10-17	$\textbf{10-43} \rightarrow \textbf{10-30}$
10-10 ightarrow 16-59	10-27 ightarrow 10-18	10-44 ightarrow 10-31
10-11 ightarrow 16-60	10-28 ightarrow 10-19	$\textbf{10-46} \rightarrow \textbf{10-32}$
10-12 ightarrow 10-8	10-29 ightarrow 16-66	$\textbf{10-47} \rightarrow \textbf{10-33}$
10-13 ightarrow 10-9	10-30 ightarrow 16-67	$10-48 \rightarrow 16-70$
$10-14 \rightarrow 10-10$	10-31 ightarrow 10-20	$\textbf{10-49} \rightarrow \textbf{10-34}$
$10-15 \rightarrow 10-11$	10-32 ightarrow 10-21	$10\text{-}50 \rightarrow 10\text{-}35$
10-16 ightarrow 10-12	10-33 ightarrow 10-22	$\textbf{10-51} \rightarrow \textbf{10-37}$
10-17 ightarrow 10-13	10-34 ightarrow 10-23	$\textbf{10-52} \rightarrow \textbf{10-38}$

10-53 ightarrow 10-39	10-101 ightarrow 10-64	11-18 - deleted
10-54 ightarrow 10-40	10-102 ightarrow 10-65	$11-19 \rightarrow 11-19$
$\textbf{10-55} \rightarrow \textbf{16-72}$	$\textbf{10-103} \rightarrow \textbf{10-66}$	$\textbf{11-20} \rightarrow \textbf{11-20}$
10-56 ightarrow 16-73	10-104 ightarrow 10-67	$\textbf{11-21} \rightarrow \textbf{11-21}$
10-57 ightarrow 16-74	10-105 ightarrow 10-68	$\textbf{11-22} \rightarrow \textbf{11-12}$
$10.58 \rightarrow 16.75$	$10 \cdot 100 \rightarrow 10 \cdot 00$ $10 \cdot 106 \rightarrow 10 \cdot 70$	$11-23 \rightarrow 11-13$
10-59 ightarrow 16-76	10-107 ightarrow 10-71	$\textbf{11-24} \rightarrow \textbf{11-14}$
10-60 ightarrow 16-77	10-108 ightarrow 10-72	$11-25 \rightarrow 11-22$
10-61 ightarrow 10-41	10-109 ightarrow 10-73	$\textbf{11-26} \rightarrow \textbf{11-23}$
$\textbf{10-62} \rightarrow \textbf{10-42}$	$\textbf{10-110} \rightarrow \textbf{10-74}$	$\textbf{11-27} \rightarrow \textbf{11-24}$
10-63 ightarrow 10-36	10-111 ightarrow 10-75	$\textbf{11-28} \rightarrow \textbf{11-25}$
10-64 ightarrow 10-42	10-112 ightarrow 10-76	$\textbf{11-29} \rightarrow \textbf{11-26}$
$10-65 \rightarrow 10-43$	$10 \cdot 112 \rightarrow 10 \cdot 10$ $10 \cdot 113 \rightarrow 10 \cdot 77$	$11-30 \rightarrow 11-27$
10-66 ightarrow 10-44	$\textbf{10-114} \rightarrow \textbf{16-81}$	$\textbf{11-31} \rightarrow \textbf{11-28}$
10-67 ightarrow 10-45	10-115 ightarrow 16-82	$\textbf{11-32} \rightarrow \textbf{11-29}$
10-68 ightarrow 10-46	$10\text{-}116 \rightarrow 16\text{-}83$	$11-33 \rightarrow 11-30$
$\textbf{10-69} \rightarrow \textbf{10-47}$	$\textbf{10-117} \rightarrow \textbf{16-84}$	$\textbf{11-34} \rightarrow \textbf{11-31}$
10-70 ightarrow 10-48	$\textbf{10-118} \rightarrow \textbf{16-85}$	$11-35 \rightarrow 11-32$
10-71 ightarrow 10-49	10-119 ightarrow 16-86	$11-36 \rightarrow 11-33$
$10.71 \rightarrow 10.49$ $10-72 \rightarrow 10-50$	$10 \cdot 119 \rightarrow 10 \cdot 00$ $10 \cdot 120 \rightarrow 16 \cdot 87$	$11.37 \rightarrow 11.34$
10-73 ightarrow 10-51	$\textbf{10-121} \rightarrow \textbf{16-88}$	$\textbf{11-38} \rightarrow \textbf{11-35}$
10-74 ightarrow 10-52	10-122 ightarrow 16-89	$11-39 \rightarrow 11-36$
10-75 ightarrow 10-53	$\textbf{10-123} \rightarrow \textbf{16-90}$	$\textbf{11-40} \rightarrow \textbf{11-37}$
$\textbf{10-76} \rightarrow \textbf{10-54}$	$\textbf{10-124} \rightarrow \textbf{16-100}$	$\textbf{11-41} \rightarrow \textbf{11-38}$
10-77 ightarrow 16-79	10-125 ightarrow 16-101	11-42 ightarrow 11-39
10-78 ightarrow 16-80	10-126 ightarrow 16-102	$\textbf{11-43} \rightarrow \textbf{11-40}$
$10.79 \rightarrow 19-53$	$10 \cdot 120 \rightarrow 10 \cdot 101 = 10 \cdot 101 = 101 \cdot 101 \cdot 101 = 101 \cdot 101 \cdot 101 = 101 \cdot 101 \cdot 101 \cdot 101 = 101 \cdot 101 \cdot 101 \cdot 101 \cdot 101 = 101 \cdot 1$	$11-44 \rightarrow 11-41$
		$11-44 \rightarrow 11-41$
10-80 ightarrow 19-57	$\textbf{10-128} \rightarrow \textbf{16-104}$	
10-81 ightarrow 19-54	$\textbf{10-129} \rightarrow \textbf{16-105}$	12-1 ightarrow 12-1
10-82 ightarrow 19-58		12-2 ightarrow 12-2
$10.83 \rightarrow 19.66$	11 1 111	
	$11-1 \rightarrow 11-1$	$12-3 \rightarrow 12-3$
10-84 ightarrow 19-56	11-2 ightarrow 11-2	$12-4 \rightarrow 12-4$
10-85 ightarrow 19-35	11-3 ightarrow 11-3	12-5 ightarrow 12-5
10-86 ightarrow 19-59	11-4 $ ightarrow$ 11-4	12-6 ightarrow 12-6
$\textbf{10-87} \rightarrow \textbf{19-67}$	$11-5 \rightarrow 11-5$	12-7 ightarrow 12-7
$\textbf{10-88} \rightarrow \textbf{19-70}$	11-6 ightarrow 11-6	$\textbf{12-8} \rightarrow \textbf{12-8}$
$10-89 \rightarrow 19-39$	11-7 ightarrow 11-7	12-9 ightarrow 12-10
$10-90 \rightarrow 19-40$	11-8 ightarrow 11-8	12-10 ightarrow 12-11
10-91 ightarrow 19-41	11-9	12-11 ightarrow 12-12
10-92 ightarrow 10-55	11-10 ightarrow 11-9	12-12 ightarrow 12-13
10-93 ightarrow 10-56	11-11 ightarrow 11-10	$\textbf{12-13} \rightarrow \textbf{12-14}$
$10.94 \rightarrow 10.57$	$11-12 \rightarrow 11-11$	$12 \cdot 13 \rightarrow 12 \cdot 14$ $12 \cdot 14 \rightarrow 12 \cdot 16$
10-95 ightarrow 10-58	$11\text{-}13 \rightarrow 11\text{-}15$	$\textbf{12-15} \rightarrow \textbf{12-18}$
10-96 ightarrow 10-59	11-14 ightarrow 11-17	12-16 ightarrow 12-19
10-98 ightarrow 10-61	$11-15 \rightarrow 11-18$	12-17 ightarrow 12-20
$10-90 \rightarrow 10-61$ $10-99 \rightarrow 10-63$		
	11-16 - deleted	$12\text{-}18 \rightarrow 10\text{-}69$
$\textbf{10-100} \rightarrow \textbf{10-60}$	11-17 - deleted	$\textbf{12-19} \rightarrow \textbf{12-21}$

$\textbf{12-20} \rightarrow \textbf{12-22}$	13-14 ightarrow 13-11	$\textbf{14-37} \rightarrow \textbf{14-30}$
$\textbf{12-21} \rightarrow \textbf{12-23}$	13-15 ightarrow 13-17	$\textbf{14-38} \rightarrow \textbf{14-31}$
12-22 ightarrow 12-17	13-16 ightarrow 13-18	$\textbf{14-39} \rightarrow \textbf{14-32}$
$\textbf{12-23} \rightarrow \textbf{12-24}$	13-17 ightarrow 13-20	
12-24 ightarrow 12-25	13-18 ightarrow 13-21	$15-1 \rightarrow 15-1$
$12-25 \rightarrow 12-26$	13-19 ightarrow 13-22	15-2 ightarrow 15-2
12-26 ightarrow 12-27	13-20 ightarrow 13-23	$15-3 \rightarrow 15-3$
12-27 ightarrow 12-30	13-21 ightarrow 13-30	$15-4 \rightarrow 15-4$
$12-28 \rightarrow 12-31$	$13-22 \rightarrow 13-31$	$15-5 \rightarrow 15-5$
$12-29 \rightarrow 12-32$	$13-23 \rightarrow 13-32$	15-6 ightarrow 15-6
$12-30 \rightarrow 12-33$	$13-24 \rightarrow 13-33$	$15-7 \rightarrow 15-7$
$12-31 \rightarrow 12-34$		$15-8 \rightarrow 15-8$
$12-32 \rightarrow 12-35$	14-1 ightarrow 14-1	$15.0 \rightarrow 15.0$ $15.9 \rightarrow 15.9$
$12.33 \rightarrow 12.36$	$14-1 \rightarrow 14-1$ $14-2 \rightarrow 14-3$	$15-10 \rightarrow 15-10$
$12.34 \rightarrow 12.37$	$14-2 \rightarrow 14-3$ $14-3 \rightarrow 14-4$	$15-10 \rightarrow 15-10$ $15-11 \rightarrow 15-11$
12-35 deleted	$14-3 \rightarrow 14-4$ $14-4 \rightarrow 19-14$	$15-11 \rightarrow 15-11$ $15-12 \rightarrow 15-12$
$12-36 \rightarrow 12-38$	$14-4 \rightarrow 10-14$ $14-5 \rightarrow 14-5$	$15-12 \rightarrow 15-12$ $15-13 \rightarrow 15-14$
$\begin{array}{c} 12\text{-}30 \rightarrow 12\text{-}38 \\ 12\text{-}37 \rightarrow 12\text{-}39 \end{array}$	$14-5 \rightarrow 14-5$ $14-6 \rightarrow 19-23$	$15-13 \rightarrow 15-14$ $15-14 \rightarrow 15-13$
$12-37 \rightarrow 12-39$ $12-39 \rightarrow 12-40$	$14-0 \rightarrow 19-23$ $14-7 \rightarrow 14-6$	$15-14 \rightarrow 15-15$ $15-15 \rightarrow 15-15$
$\begin{array}{c} 12\text{-}38 \rightarrow 12\text{-}40 \\ 12\text{-}39 \rightarrow 12\text{-}41 \end{array}$	$14-7 \rightarrow 14-0$ $14-8 \rightarrow 14-7$	$13-13 \rightarrow 13-13$ $15-16 \rightarrow 15-16$
$12-39 \rightarrow 12-41$ $12-40 \rightarrow 12-42$	$\begin{array}{c} \textbf{14-0} \rightarrow \textbf{14-7} \\ \textbf{14-9} \rightarrow \textbf{14-8} \end{array}$	$\begin{array}{c} 13-10 \rightarrow 13-10 \\ 15-17 \rightarrow 15-17 \end{array}$
$\begin{array}{c} 12 \textbf{-40} \rightarrow 12 \textbf{-42} \\ 12 \textbf{-41} \rightarrow 12 \textbf{-43} \end{array}$	$\begin{array}{c} \textbf{14-9} \rightarrow \textbf{14-8} \\ \textbf{14-10} \rightarrow \textbf{14-9} \end{array}$	
$\begin{array}{c} 12\textbf{-41} \rightarrow 12\textbf{-43} \\ 12\textbf{-42} \rightarrow 12\textbf{-44} \end{array}$		$15-18 \rightarrow 15-18$
	$\begin{array}{c} 14\text{-}11 \rightarrow 14\text{-}10 \\ 14\text{-}12 \rightarrow 12\text{-}0 \end{array}$	$15-19 \rightarrow 15-20$
$12-43 \rightarrow 12-45$	$\begin{array}{c} \textbf{14-12} \rightarrow \textbf{12-9} \\ \textbf{14.12} \rightarrow \textbf{14.11} \end{array}$	$\begin{array}{c} 15\text{-}20 \rightarrow 15\text{-}23 \\ 15\text{-}21 \rightarrow 15\text{-}24 \end{array}$
$\begin{array}{c} 12\text{-}44 \rightarrow 12\text{-}46 \\ 12 \text{-}45 \qquad 12 \text{-}47 \end{array}$	$\begin{array}{c} 14\text{-}13 \rightarrow 14\text{-}11 \\ 14\text{-}14 \rightarrow 14\text{-}12 \end{array}$	$\begin{array}{c} 15\text{-}21 \rightarrow 15\text{-}24 \\ 15\text{-}22 \rightarrow 15\text{-}21 \end{array}$
$\begin{array}{c} 12\text{-}45 \rightarrow 12\text{-}47 \\ 12 \text{-}46 \end{array}$	$14\text{-}14 \rightarrow 14\text{-}12$	$\begin{array}{c} \textbf{15-22} \rightarrow \textbf{15-21} \\ \textbf{15-22} \rightarrow \textbf{15-22} \end{array}$
$\begin{array}{c} 12\text{-}46 \rightarrow 12\text{-}48 \\ 12 \text{-}47 \rightarrow 12 \text{-}18 \end{array}$	$14-15 \rightarrow 14-14$	$15\text{-}23 \rightarrow 15\text{-}22$
$\begin{array}{c} \textbf{12-47} \rightarrow \textbf{13-19} \\ \textbf{12-49} \rightarrow \textbf{12-49} \end{array}$	$14\text{-}16 \rightarrow 14\text{-}16$	$15-24 \rightarrow 15-25$
$12-48 \rightarrow 12-49$	$14\text{-}17 \rightarrow 13\text{-}27$	$15-25 \rightarrow 15-27$
$12-49 \rightarrow 12-50$	$14\textbf{-}18 \rightarrow 13\textbf{-}26$	$15-26 \rightarrow 15-28$
12-50 ightarrow 13-24	$14\text{-}19 \rightarrow 13\text{-}10$	$\textbf{15-27} \rightarrow \textbf{15-32}$
12-51 ightarrow 12-51	14-20 ightarrow 12-15	$15\text{-}28 \rightarrow 15\text{-}33$
$12-52 \rightarrow 12-52$	$14\text{-}21 \rightarrow 14\text{-}17$	$15\text{-}29 \rightarrow 15\text{-}36$
$\textbf{12-53} \rightarrow \textbf{12-53}$	$14\textbf{-}22 \to 14\textbf{-}18$	$15\text{-}30 \rightarrow 15\text{-}35$
	$\mathbf{14\text{-}23} \rightarrow \mathbf{14\text{-}19}$	$\textbf{15-31} \rightarrow \textbf{15-37}$
$13-1 \rightarrow 13-1$	$14\textbf{-}24 \rightarrow \textbf{19}\textbf{-}\textbf{69}$	$\textbf{15-32} \rightarrow \textbf{15-34}$
13-2 ightarrow 13-2	$\textbf{14-25} \rightarrow \textbf{14-20}$	$\textbf{15-33} \rightarrow \textbf{15-38}$
13-3 ightarrow 13-3	$\textbf{14-26} \rightarrow \textbf{14-21}$	$\textbf{15-34} \rightarrow \textbf{15-19}$
13-4 ightarrow 13-4	$\textbf{14-27} \rightarrow \textbf{14-22}$	$\textbf{15-35} \rightarrow \textbf{15-29}$
13-5 ightarrow 13-5	$\textbf{14-28} \rightarrow \textbf{13-28}$	$\textbf{15-36} \rightarrow \textbf{15-30}$
13-6 ightarrow 13-6	$\textbf{14-29} \rightarrow \textbf{13-25}$	$\textbf{15-37} \rightarrow \textbf{15-39}$
13-7 ightarrow 13-7	$\textbf{14-30} \rightarrow \textbf{14-23}$	$\textbf{15-38} \rightarrow \textbf{15-41}$
13-8 ightarrow 19-55	$\textbf{14-31} \rightarrow \textbf{14-24}$	$\textbf{15-39} \rightarrow \textbf{15-40}$
13-9 deleted	$\textbf{14-32} \rightarrow \textbf{14-26}$	$\textbf{15-40} \rightarrow \textbf{15-42}$
13-10 ightarrow 13-8	$\textbf{14-33} \rightarrow \textbf{14-25}$	$\textbf{15-41} \rightarrow \textbf{15-43}$
13-11 ightarrow 13-9	$\textbf{14-34} \rightarrow \textbf{14-27}$	$\textbf{15-42} \rightarrow \textbf{15-44}$
13-12 ightarrow 13-14	$\textbf{14-35} \rightarrow \textbf{14-28}$	$\textbf{15-43} \rightarrow \textbf{15-45}$
13-13 ightarrow 13-15	$\textbf{14-36} \rightarrow \textbf{14-29}$	$\textbf{15-44} \rightarrow \textbf{15-46}$

15-45 ightarrow 15-47	16-27 ightarrow 16-24	17-4 ightarrow 17-5
15-46 ightarrow 15-48	16-28 ightarrow 16-25	17-5 ightarrow 17-6
15-47 ightarrow 15-49	$\textbf{16-29} \rightarrow \textbf{16-26}$	17-6 ightarrow 17-7
15-48 ightarrow 15-50	16-30 ightarrow 16-27	17-7 ightarrow 17-8
15-49 ightarrow 15-62	16-31 ightarrow 16-28	17-8 ightarrow 17-9
$15-50 \rightarrow 15-51$	16-32 ightarrow 16-29	$17-9 \rightarrow 17-10$
$15-51 \rightarrow 15-52$	16-33 deleted	$17-10 \rightarrow 17-11$
$15-51 \rightarrow 15-52$ $15-52 \rightarrow 15-53$	combined	$17-10 \rightarrow 17-11$ $17-11 \rightarrow 17-12$
$15-53 \rightarrow 15-54$	with 10-115	$17-11 \rightarrow 17-12$ $17-12 \rightarrow 17-13$
$15-53 \rightarrow 15-54$ $15-54 \rightarrow 15-55$		$17-12 \rightarrow 17-13$ $17-13 \rightarrow 17-14$
	$16\text{-}34 \rightarrow 16\text{-}30$	
$15-55 \rightarrow 15-56$	$16\textbf{-}35 \rightarrow \textbf{16}\textbf{-}31$	$17-14 \rightarrow 17-15$
$15-56 \rightarrow 15-57$	$\textbf{16-36} \rightarrow \textbf{16-32}$	$\textbf{17-15} \rightarrow \textbf{17-16}$
$15-57 \rightarrow 15-58$	$\textbf{16-37} \rightarrow \textbf{16-33}$	$\textbf{17-16} \rightarrow \textbf{17-17}$
$\textbf{15-58} \rightarrow \textbf{15-60}$	$\textbf{16-38} \rightarrow \textbf{16-34}$	$\textbf{17-17} \rightarrow \textbf{17-18}$
$15-59 \rightarrow 15-61$	$\textbf{16-39} \rightarrow \textbf{16-35}$	$\textbf{17-18} \rightarrow \textbf{17-19}$
$\textbf{15-60} \rightarrow \textbf{15-59}$	16-40 ightarrow 16-36	$\textbf{17-19} \rightarrow \textbf{17-3}$
$\textbf{15-61} \rightarrow \textbf{15-63}$	16-41 ightarrow 16-38	$\textbf{17-20} \rightarrow \textbf{17-20}$
15-62 ightarrow 15-64	16-42 ightarrow 16-41	$17-21 \rightarrow 17-21$
15-63 ightarrow 15-65	16-43 ightarrow 16-42	17-22 ightarrow 17-22
15-64 ightarrow 15-66	16-44 ightarrow 16-39	17-23 ightarrow 17-23
	$16-45 \rightarrow 16-40$	$17-24 \rightarrow 17-24$
16-1 ightarrow 16-1	$16-46 \rightarrow 16-43$	$17-25 \rightarrow 17-25$
16-2 ightarrow 16-2	$16-47 \rightarrow 16-44$	17-26 deleted
$16-2 \rightarrow 16-2$ $16-3 \rightarrow 16-3$	$16-48 \rightarrow 16-45$	combined
$16-3 \rightarrow 16-3$ $16-4 \rightarrow 16-4$	$16-49 \rightarrow 16-50$	with 17-25
$16-5 \rightarrow 16-5$	$16-50 \rightarrow 16-51$	$17-27 \rightarrow 17-26$
$\begin{array}{c} \textbf{10-5} \rightarrow \textbf{10-5} \\ \textbf{16-6} \rightarrow \textbf{16-7} \end{array}$	$\begin{array}{c} \textbf{10-51} \\ \textbf{16-51} \rightarrow \textbf{16-52} \end{array}$	
$10-0 \rightarrow 10-7$ $16-7 \rightarrow 16-8$		$\begin{array}{c} 17\text{-}28 \rightarrow 17\text{-}27 \\ 17 \ 20 \rightarrow 17 \ 28 \end{array}$
	$\begin{array}{c} \textbf{16-52} \rightarrow \textbf{16-53} \\ \textbf{16-52} \rightarrow \textbf{16-53} \end{array}$	$\begin{array}{c} \textbf{17-29} \rightarrow \textbf{17-28} \\ \textbf{17-20} \qquad \textbf{17-20} \end{array}$
$16-8 \rightarrow 16-9$	$16\text{-}53 \rightarrow 16\text{-}54$	$17\textbf{-}30 \rightarrow 17\textbf{-}29$
$16-9 \rightarrow 16-10$	$16\text{-}54 \rightarrow 16\text{-}55$	17-31 deleted
$\begin{array}{c} \textbf{16-10} \rightarrow \textbf{16-11} \\ \textbf{16-11} \end{array}$	$16-55 \rightarrow 16-56$	combined
$\textbf{16-11} \rightarrow \textbf{16-12}$	$\textbf{16-56} \rightarrow \textbf{16-91}$	with 17-30
$\textbf{16-12} \rightarrow \textbf{16-13}$	16-57 ightarrow 16-6	17-32 ightarrow 17-30
$\textbf{16-13} \rightarrow \textbf{16-18}$	$\textbf{16-58} \rightarrow \textbf{16-92}$	$17-33 \rightarrow 17-31$
$\textbf{16-14} \rightarrow \textbf{16-17}$	$\textbf{16-59} \rightarrow \textbf{16-93}$	17-34 ightarrow 17-32
$\textbf{16-15} \rightarrow \textbf{16-19}$	$\textbf{16-60} \rightarrow \textbf{16-94}$	17-35 ightarrow 17-33
$\textbf{16-16} \rightarrow \textbf{16-20}$	16-61 ightarrow 16-46	$\textbf{17-36} \rightarrow \textbf{17-34}$
$\textbf{16-17} \rightarrow \textbf{16-21}$	16-62 ightarrow 16-48	17-37 ightarrow 17-35
$\textbf{16-18} \rightarrow \textbf{16-22}$	16-63 ightarrow 16-95	$17-38 \rightarrow 17-36$
$\textbf{16-19} \rightarrow \textbf{16-14}$	16-64 ightarrow 16-96	17-39 ightarrow 17-37
$16-20 \rightarrow 16-15$	16-65 ightarrow 16-97	17-40 ightarrow 17-38
$16 \cdot 20 \rightarrow 16 \cdot 10$ $16 \cdot 21 \rightarrow 16 \cdot 16$	$16.66 \rightarrow 16.98$	
$16-22 \rightarrow 16-23$	$16.67 \rightarrow 16.99$	$\mathbf{18-1} ightarrow \mathbf{18-1}$
$16-22 \rightarrow 10-25$ $16-23 \rightarrow 19-36$	20 07 10 77	$10-1 \rightarrow 10-1$ $18-2 \rightarrow 18-2$
$16-24 \rightarrow 19-42$	17-1 ightarrow 17-1	$18-3 \rightarrow 18-3$
$16-24 \rightarrow 19-42$ $16-25 \rightarrow 19-43$	$\begin{array}{c} 17\textbf{-1} \rightarrow 17\textbf{-1} \\ 17\textbf{-2} \rightarrow 17\textbf{-2} \end{array}$	$18-3 \rightarrow 18-3$ $18-4 \rightarrow 18-4$
$\begin{array}{c} \textbf{10-25} \rightarrow \textbf{19-45} \\ \textbf{16-26} \rightarrow \textbf{19-44} \end{array}$	$17-2 \rightarrow 17-2$ $17-3 \rightarrow 17-4$	$18-4 \rightarrow 18-4$ $18-5 \rightarrow 18-5$
10-20 - 17-44	$1/-3 \rightarrow 1/-4$	10-3 → 10-3

18-6 ightarrow 18-6	18-43 ightarrow 18-43	19-32 ightarrow 19-34
18-7 ightarrow 18-7	$18-44 \rightarrow 18-44$	19-33 ightarrow 19-61
$18-8 \rightarrow 18-8$		19-34 ightarrow 19-37
$18-9 \rightarrow 18-9$	19-1 ightarrow 19-1	19-35 ightarrow 19-64
18-10 ightarrow 18-10 .	19-2 ightarrow 19-2	19-36 ightarrow 19-62
18-11 ightarrow 18-11	19-3 ightarrow 19-3	19-37 ightarrow 19-63
18-12 ightarrow 18-12	19-4 ightarrow 19-4	$\textbf{19-38} \rightarrow \textbf{19-38}$
18-13 ightarrow 18-13	19-5 ightarrow 19-5	19-39 ightarrow 19-65
$18 extsf{-}14 o18 extsf{-}14$	19-6 ightarrow 19-6	19-40 deleted
18-15 ightarrow 18-15	19-7 ightarrow 19-7	incorporated
18-16 ightarrow 18-16	$19-8 \rightarrow 19-8$	into 10-85
$18 extsf{-}17 o18 extsf{-}17$	$19-9 \rightarrow 19-9$	19-41 ightarrow 19-45
18-18 ightarrow 18-18	19-10 ightarrow 19-10	19-42 ightarrow 19-46
$\textbf{18-19} \rightarrow \textbf{18-19}$	19-11 ightarrow 19-11	19-43 ightarrow 19-47
$\textbf{18-20} \rightarrow \textbf{18-20}$	19-12 ightarrow 19-12	$19-44 \rightarrow 19-48$
18-21 ightarrow 18-21	19-13 ightarrow 19-13	$19-45 \rightarrow 19-50$
$\mathbf{18-22} ightarrow \mathbf{18-22}$	19-14 ightarrow 19-17	$\textbf{19-46} \rightarrow \textbf{19-51}$
$\mathbf{18-23} ightarrow \mathbf{18-23}$	19-15 ightarrow 19-15	19-47 ightarrow 19-71
$\mathbf{18-24} ightarrow \mathbf{18-24}$	19-16 ightarrow 19-18	$\textbf{19-48} \rightarrow \textbf{19-68}$
18-25 ightarrow 18-25	19-17 deleted	$\textbf{19-49} \rightarrow \textbf{19-72}$
18-26 ightarrow 18-26	incorporated	$\textbf{19-50} \rightarrow \textbf{19-60}$
$\mathbf{18-27} ightarrow \mathbf{18-27}$	in 19-14	19-51 ightarrow 19-49
$\textbf{18-28} \rightarrow \textbf{18-28}$	19-18 ightarrow 19-19	19-52 ightarrow 19-73
18-29 ightarrow 18-29	19-19 ightarrow 19-20	19-53 ightarrow 19-74
18-30 ightarrow 18-30	19-20 ightarrow 19-21	19-54 ightarrow 19-75
18-31 ightarrow 18-31	19-21 ightarrow 19-22	$\textbf{19-55} \rightarrow \textbf{19-76}$
18-32 ightarrow 18-32	19-22 ightarrow 19-25	$\textbf{19-56} \rightarrow \textbf{19-77}$
18-33 ightarrow 18-33	19-23 ightarrow 19-27	19-57 ightarrow 19-78
18-34 ightarrow 18-34	19-24 ightarrow 19-28	$\textbf{19-58} \rightarrow \textbf{19-79}$
18-35 ightarrow 18-35	19-25 ightarrow 19-30	$\textbf{19-59} \rightarrow \textbf{19-80}$
18-36 ightarrow 18-36	19-26 ightarrow 19-26	$\textbf{19-60} \rightarrow \textbf{19-81}$
18-37 ightarrow 18-37	19-27 ightarrow 19-29	$\textbf{19-61} \rightarrow \textbf{19-82}$
$\textbf{18-38} \rightarrow \textbf{18-38}$	$\textbf{19-28} \rightarrow \textbf{19-31}$	$\textbf{19-62} \rightarrow \textbf{19-83}$
$\textbf{18-39} \rightarrow \textbf{18-39}$	$\textbf{19-29} \rightarrow \textbf{19-24}$	$\textbf{19-63} \rightarrow \textbf{19-84}$
18-40 ightarrow 18-40	$\textbf{19-30} \rightarrow \textbf{19-32}$	
$\textbf{18-42} \rightarrow \textbf{18-42}$	$\textbf{19-31} \rightarrow \textbf{19-33}$	

ABBREVIATIONS

COMMON ABBREVIATIONS

Other, less common abbreviations are given in the text when the term is used.

		0 I
Ac	Acetyl	∽ ∽ Me
acac	Acetylacetonate (ligand)	
AIBN	Azobisisobutyronitrile	
aq	Aqueous	
ARC	Anion relay chemistry	
Ax	Axial	
	9-Borabicyclo[3.3.1]nonylboryl	
,B)		
9-BBN	9-Borabicyclo[3.3.1]nonane	
BDE	Bond dissociation energy	
BER	Borohydride exchange resin	
BINAP	(2R,3S)-2,2'-bis-(diphenylphosphino)-1,1'-binapthyl	
BINOL	1,1'-Bi-2-naphthol	
BMS	Borane methyl sulfide	
Bn	Benzyl	$-CH_2Ph$
		Q
D		
Boc	<i>tert</i> -Butoxycarbonyl	1 Ot-Bu
Bpy (Bipy) BSA	2,2'-Bipyridyl	
	<i>N-O</i> -Bis(trimethylsily)acetamide	
Bu	<i>n</i> -Butyl	$-CH_2CH_2CH_2CH_3$
Bs D-	Brosylate, <i>O</i> -(4-Bromophenyl) sulfenate	
Bz CAN	Benzoyl Ceric ammonium nitrate	$(\mathbf{NII}) \mathbf{C}_{2}(\mathbf{NO})$
	Catalytic	$(NH_4)_2Ce(NO_3)_6$
cat	Catalytic	
		O II
Cbz	<i>N</i> -Carbobenzyloxy	CH2Ph
CD	Circular dichroism	
Chap	Chapter(s)	
Chirald	(2S,3R)-(+)-4-dimethylamino-1,2-diphenyl-3-	
Junua	methylbutan-2-ol	
CIDNIP	Chemically induced dynamic nuclear polarization	
CIP	Cahn–Ingold–Prelog	
CNDO	Complete Neglect of Differential Overlap	
cod	1,5-Cyclooctadienyl (ligand)	

XXII COMMON ABBREVIATIONS

cot	1,3,5-Cyclooctatrienyl (ligand)	
Ср	Cyclopentadienyl	
		<u>بر</u>
Су	Cyclohexyl	< \
°C	Temperature in degrees Celcius	
3D	Three dimensional	
DABCO	1,4-Diazabicyclo[2.2.2]octane	
DAST	Diethylammoniumsulfer trifluoride	Et_2NSF_3
dba	Dibenzylidene acetone	
DBN	1,5-Diazabicyclo[4.3.0]non-5-ene	
DBU	1,8-Diazabicyclo[5.4.0]undec-7-ene	
DCC	1,3-Dicyclohexylcarbodiimide	$c - C_6 H_{11} - N = C = N - c$
		$C_{6}H_{11}$
DDQ	2,3-Dichloro-5,6-dicyano-1,4-benzoquinone	
DDT	1,1,1-Trichloro-2,2'-bis(p-chlorophenyl)ethane	
DEA	Diethylamine	$HN(CH_2CH_3)_2$
DEAD	Diethylazodicarboxylate	EtO ₂ C-N=NCO ₂ Et
DHAD	Dihydroquinidine	
DHU	Dicyclohexylurea	
DIAD	Diisopropylazodicarboxylate	
Dibal-H	Diisobutylaluminum hydride	(Me ₂ CHCH ₂) ₂ AlH
DMA	Dimethylacetamide	
DMAP	4-Dimethylaminopyridine	
DME	Dimethoxyethane	MeOCH ₂ CH ₂ OMe
DMEAD	Di-2-methoxyethyl azodicarboxylate	2 2
		0
		Ĭ
DMF	<i>N</i> , <i>N</i> ′-Dimethylformamide	H ^{NMe} ₂
DMS	Dimethyl sulfide	
DMSO	Dimethyl sulfoxide (ligand)	
DNA	Deoxyribonucleic acid	
DOSY	Diffusion-ordered NMR Spectroscopy	
dppb	1,4-Bis-(Diphenylphosphino) butane	Ph ₂ P(CH ₂) ₄ PPh ₂
dppe	1,2-Bis-(Diphenylphosphino)ethane; see also Diphos	Ph ₂ PCH ₂ CH ₂ PPh ₂
dppf	Bis(Diphenylphosphino)ferrocene	
dpm	1,1-Bis(diphenylphosphino)methane	
dppp	1,3-Bis(Diphenylphosphino)propane	$Ph_2P(CH_2)_3PPh_2$
e ⁻	Transfer of electrons	
% ee	% Enantiomeric excess	
EE	1-Ethoxyethoxy	EtO(Me)CH
Et	Ethyl	$-CH_2CH_3$
EDA	Electron donor-acceptor orbital	
EDTA	Ethylenediaminetetraacetic acid	
Equiv	Equivalent(s)	
EPR	Electron paramagnetic resonance spectroscopy	
ESR	Electron spin resonance spectroscopy	
FMO	Frontier molecular orbital	
FVP	Flash vacuum pyrolysis	
GC	Gas chromatography	
h	Hour (hours)	
hv	Irradiation with light	
HF	Hartree–Fock	

HMO	Hückel molecular orbital	
HMPA	Hexamethylphosphoramide	$(Me_2N)_3P=O$
HMPT	Hexamethylphosphorus triamide	$(Me_2N)_3P$
1 H NMR	Proton nuclear magnetic resonance spectroscopy	
HOMO	Highest occupied molecular orbital	
HPLC	High-performance liquid chromatography	
HSAB	Hard–Soft Acid–Base	
IBX	o-Iodoxybenzoic acid	
<i>i</i> -Pr	Isopropyl	$-CH(Me)_2$
IR	Infrared spectroscopy	
IUPAC	International Union of Pure and Applied Chemistry	
ISC	Intersystem crossing	
LCAO	Linear combination of atomic orbitals	
LICA	Lithium N-isopropyl-N-cyclohexylamide	
(LIPCA)		
LDA	Lithium diisopropylamide	$LiN(i-Pr)_2$
LHMDS	Lithium hexamethyl disilazide	LiN(SiMe ₃) ₂
LTMP	Lithium 2,2,6,6-tetramethylpiperidide	
LUMO	Lowest unoccupied molecular orbital	
Mcpba	<i>m</i> -Chloroperoxybenzoic acid	
Me	Methyl	-CH ₃ or Me
MEM	β-Methoxyethoxymethyl	MeOCH ₂ CH ₂ OCH ₂ -
Mes	Mesityl	2,4,6-tri-Me-C ₆ H ₂
min	minutes	
MMPP	Magnesium monoperoxyphthalate	
MO	Molecular Orbital	
MOM	Methoxymethyl	MeOCH ₂ -
Ms	Methanesulfonyl	MeSO ₂ —
МТО	Methyl trioxorhenium	
NBS	<i>N</i> -Bromosuccinimide	
NCS	<i>N</i> -Chlorosuccinimide	
NHS	<i>N</i> -Hydroxysuccinimide	
NIS	<i>N</i> -Iodosuccinimide	
NMO	N-Methylmorpholine N-oxide	
NMP	<i>N</i> -Methylpyrrolidinone	
NMR	Nuclear magnetic resonance	
NOESY	Nuclear overhauser effect spectroscopy	
NOE	Nuclear overhauser effect	
Nu (Nuc)	Nucleophile	
OBs	O-(4-Bromophenyl)sulfinate	
Oxone [®]	2 KHSO ₅ ·KHSO ₄ ·K ₂ SO ₄	
	Polymeric backbone	
PCC	Pyridinium chlorochromate	
PDC	Pyridinium dichromate	
PEG	Polyethylene glycol	
PES	Photoelectron spectroscopy	
		\mathbf{s}
Ph	Phenyl	\int
PhH	Benzene	
PhMe	Toluene	

COMMON ABBREVIATIONS

PIFA PPHF	Phenyliodine (III)-bis-(trifluoroacetate) Pyridinium poly(hydrogen fluoride)	
PMHS	Polymethylhydrosiloxane	
Pr	<i>n</i> -Propyl	-CH ₂ CH ₂ CH ₃
11	и-поруг	
		N.
Ру	Pyridine	
Quant	Quantitative yield	
Red-Al	[(MeOCH ₂ CH ₂ O)2AlH ₂]Na	
ROESY	Rotating-frame NOE spectroscopy	
rt	Room temperature	
sBuLi	sec-Butyllithium	CH ₃ CH ₂ CH(Li)CH ₃
S	seconds	
salen	Bis (salicylidene) ethylenediamine	
sc CO_2	supercritical CO ₂	
SCF	self-consistant field	
SDS	Sodium dodecyl sulfate	
Sec.	Section(s)	
SET	Single electron transfer	
Siamyl	6	
(Sia) ₂ BH	Disiamylborane sec-Isoamyl	
SOMO	Singly occupied molecular orbital	
Tr	Tritium	
TBAF	Tetrabutylammonium fluoride	n-Bu ₄ N ⁺ F ⁻
t-Bu	<i>tert</i> -Butyl	$-CMe_3$
TEAB	Tetraethylammonium bromide	
TEBA	Triethylbenzylammonium	Bn(Et ₃) ₃ N ⁺
TED	Tetraethylenediamine	2(2.3)31.(
TEMPO	2,2,6,6-Tetramethylpiperidinyloxy free radical	
TFA	Trifluoroacetic acid (solvent)	CF ₃ COOH
tfa	Trifluoroacetic acid (ligand)	$(CF_3CO)_2O$
Tf (OTf)	Triflate	$-SO_2CF_3(-OSO_2CF_3)$
THF	Tetrahydrofuran (solvent)	502013 (0502013)
THP	Tetrahydropyran	
TMEDA	Tetramethylethylenediamine	Me ₂ NCH ₂ CH ₂ NMe ₂
TMEDA	Trimethylsilyl or tetramethylsilane	$-Si(CH_3)_3$
Tol	Tolyl	$-51(CH_3)_3$ 4-(Me)C ₆ H ₄
TOSMIC	Toluenesulfonylmethyl isocyanide	$4-(Me)C_6H_4$
TPAP	Tetrapropylammonium perruthenate	$Pr_4N^+RuO_4^-$
TPAP		Pr4N RuO4
	Triphenylphosphine (solvent)	DI
tpp	Triphenylphosphine (ligand)	pPh_3
Ts(Tos)	Tosyl = p-Toluenesulfonyl	$4-(Me)C_6H_4SO_2$
UV	Ultraviolet spectroscopy	
VCD	Vibrational circular dichroism	
VDW	van der Walls	
vis	Visible	
XPS	X-ray photoelectron spectroscopy	

xxiv

Professor Michael B. Smith was born in Detroit, Michigan in 1946. In 1957, he and his family moved to Madison Heights, Virginia. After graduation from Amherst County high school, he entered Ferrum Jr. College and graduated with an A.A. Professor Smith transferred to Virginia Polytechnic Institute (Virginia Tech), where he did undergraduate research with Professor Harold Bell, and graduated with a B.S in chemistry in 1969. After working as an analytical chemist at the Newport News Shipbuilding and Dry Dock Co. (Tenneco) in Newport News, Virginia for three years, he began graduate studies at Purdue University under the mentorship of Professor Joseph Wolinsky. Professor Smith graduated with a Ph.D. in Organic chemistry in 1977. He spent one year as a faculty research associate at the Arizona State University in the Cancer Research Institute, directed by Professor George R. Pettit, and a second year doing postdoctoral work at the Massachusetts Institute of Technology under the mentorship of Professor Sidney Hecht. In 1979 he began his independent academic career, where he now holds the rank of full professor.

Professor Smith is the author of approximately 90 independent research articles, and 20 published books. The books include the 5th and 6th edition of *March's Advanced Organic Chemistry* (Wiley), volumes 6–12 of the *Compendium of Organic Synthetic Methods* (Wiley), *Organic Chemistry a Two Semester Course* (HarperCollins) into its 2nd edition, and *Organic Synthesis* (Elsevier) in its 3rd edition. A new undergraduate organic chemistry book, *Organic Chemistry: An Acid-Base Approach*, was published in 2011 by the CRC Press.

Professor Smith's current research involves the synthesis and structural verification of lipids obtained from the dental pathogen *Porphyromonas gingivalis*, which show inflammatory activity, induce bone degeneration and are involved in triggering multiple sclerosis. A main area of research is the synthesis of fluorescent dye-heterocyclic conjugates that target hypoxic cancerous tumors, allowing non-invasive fluorescence imaging in the near IR. The synthesis of anti-cancer alkaloids is also ongoing.

INTRODUCTION

This book contains 19 chapters. Chapters 1–9 may be thought of as an introduction to Part II. The first-five chapters deal with the structure of organic compounds. These chapters discuss the kinds of bonding important in organic chemistry, the fundamental principles of conformation and stereochemistry of organic molecules, and reactive intermediates in organic chemistry. Chapters 6–9 are concerned with general principles of mechanism in organic chemistry, including acids and bases, photochemistry, sonochemistry and microwave irradiation, and finally the relationship between structure and reactivity.

Chapters 10–19, which make up Part II, are directly concerned with the nature and the scope of organic reactions and their mechanisms.

March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, Seventh Edition. Michael B. Smith.

 $[\]ensuremath{\mathbb{C}}$ 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

Localized Chemical Bonding

Localized chemical bonding may be defined as bonding in which the electrons are shared by two and only two nuclei. Such bonding is the essential feature associated with the structure of organic molecules.¹ Chapter 2 will discuss *delocalized bonding*, in which electrons are shared by more than two nuclei.

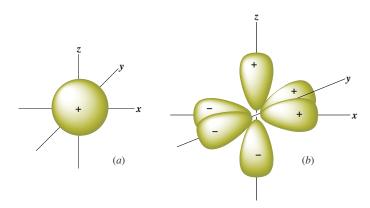
1.A. COVALENT BONDING²

Wave mechanics is based on the fundamental principle that electrons behave as waves (e.g., they can be diffracted). Consequently, a wave equation can be written for electrons, in the same sense that light waves, sound waves, and so on, can be described by wave equations. The equation that serves as a mathematical model for electrons is known as the *Schrödinger equation*, which for a one-electron system is

$$\frac{\delta^2 \psi}{\delta x^2} + \frac{\delta^2 \psi}{\delta y^2} + \frac{\delta^2 \psi}{\delta z^2} + \frac{8\pi^2 m}{h^2} (\mathbf{E} - \mathbf{V}) \psi = 0$$

where *m* is the mass of the electron, *E* is its total energy, *V* is its potential energy, and *h* is Planck's constant. In physical terms, the function (Ψ) expresses the square root of the probability of finding the electron at any position defined by the coordinates *x*, *y*, and *z*, where the origin is at the nucleus. For systems containing more than one electron, the equation is similar, but more complicated.

The Schrödinger equation is a differential equation, so solutions to it are themselves equations, but the solutions are not differential equations. They are just simple equations for which graphs can be drawn. Such graphs are essentially three-dimensional (3D)


¹ See Hoffmann, R.; Schleyer, P.v.R.; Schaefer, III, H.F. Angew. Chem. Int. Ed. (Engl.) 2008, 47, 7164.

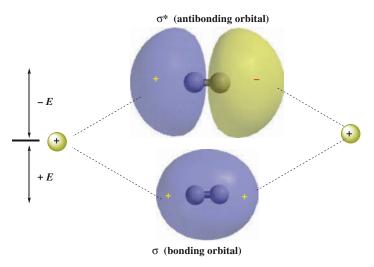
² This treatment of orbitals is simplified by necessity. For more detailed treatments of orbital theory, as applied to organic chemistry, see Matthews, P.S.C. *Quantum Chemistry of Atoms and Molecules*, Cambridge University Press, Cambridge, **1986**; Clark, T. A Handbook of Computational Chemistry, Wiley, NY, **1985**; Albright, T.A.; Burdett, J.K.; Whangbo, M. Orbital Interactions in Chemistry, Wiley, NY, **1985**; MacWeeny, R.M. Coulson's Valence, Oxford University Press, Oxford, **1980**; Murrell, J.N.; Kettle, S.F.A; Tedder, J.M. The Chemical Bond, Wiley, NY, **1978**; Dewar, M.J.S.; Dougherty. R.C. The PMO Theory of Organic Chemistry, Plenum, NY, **1975**; Zimmerman, H.E. Quantum Mechanics for Organic Chemists, Academic Press, NY, **1975**; Borden, W.T. Modern Molecular Orbital Theory for Organic Chemists, Prentice-Hall, Englewood Cliffs, NJ, **1975**.

March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, Seventh Edition. Michael B. Smith.

^{© 2013} John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

4 LOCALIZED CHEMICAL BONDING

FIG. 1.1. (a) The 1s orbital. (b) The three 2p orbitals.


pictures that show the electron density, and these pictures are called *orbitals* or electron clouds. Most students are familiar with the shapes of the *s* and *p* atomic orbitals (Fig. 1.1). Note that each *p* orbital has a *node*: A region in space where the probability of finding the electron is extremely small.³ Also note that in Fig. 1.1 some lobes of the orbitals are labeled + and others –. These signs do not refer to positive or negative *charges*, since both lobes of an electron cloud must be negatively charged. They are the signs of the wave function Ψ . When a node separates two parts of an orbital, a point of zero electron density, Ψ always has opposite signs on the two sides of the node. According to the *Pauli exclusion principle*, no more than two electrons can be present in any orbital, and they must have opposite spins.

Unfortunately, the Schrödinger equation can be solved exactly only for one-electron systems (e.g., the hydrogen atom). If it could be solved exactly for molecules containing two or more electrons,⁴ a precise picture of the shape of the orbitals available to each electron (especially for the important ground state) would become available, as well as the energy for each orbital. Since exact solutions are not available, drastic approximations must be made. There are two chief general methods of approximation: the molecular orbital (MO) method and the valence bond method.

In the MO method, bonding is considered to arise from the overlap of atomic orbitals. When any number of atomic orbitals overlap, they combine to form an equal number of new orbitals, called *molecular orbitals*. Molecular orbitals differ from atomic orbitals in that an electron cloud effectively surrounds the nuclei of two or more atoms, rather than just one atom. In other words, the electrons are shared by two atoms rather than being localized on one atom. In localized bonding for a single covalent bond, the number of atomic orbitals that overlap is two (each containing one electron), so that two molecular orbitals are generated. One of these, called a *bonding orbital*, has a lower energy than the original atomic orbitals (otherwise a bond would not form), and the other, called an *antibonding orbital*, has a higher

³ When wave mechanical calculations are made according to the Schrödinger equation, the probability of finding the electron in a node is zero, but this treatment ignores relativistic considerations. When such considerations are applied, Dirac has shown that nodes do have a very small electron density: Powell, R.E. J. Chem. Educ. **1968**, 45, 558. See also, Ellison, F.O.; Hollingsworth, C.A. J. Chem. Educ. **1976**, 53, 767; McKelvey, D.R. J. Chem. Educ. **1983**, 60, 112; Nelson, P.G. J. Chem. Educ. **1990**, 67, 643. For a general review of relativistic effects on chemical structures, see Pyykkö, P. Chem. Rev. **1988**, 88, 563.

⁴ See Roothaan, C.C.J.; Weiss, A.W. *Rev. Mod. Phys.* **1960**, *32*, 194; Kolos, W.; Roothaan, C.C.J. *Rev. Mod. Phys.* **1960**, *32*, 219. For a review, see Clark, R.G.; Stewart, E.T. Q. Rev. Chem. Soc. **1970**, *24*, 95.

FIG. 1.2. Overlap of two 1s orbitals gives rise to a σ and a σ^* orbital.

energy. Orbitals of lower energy fill first. Since the two original atomic orbitals each held one electron, both of these electrons will reside in the new molecular *bonding* orbital, which is lower in energy. Remember that any orbital can hold two electrons. The higher energy antibonding orbital remains empty in the ground state.

The strength of a bond is determined by the amount of electron density that resides between the two nuclei. The greater the overlap of the orbitals, the stronger the bond, but total overlap is prevented by repulsion between the nuclei. Figure 1.2 shows the bonding and antibonding orbitals that arise by the overlap of two 1s electrons. Note that since the antibonding orbital has a node between the nuclei, there is practically no electron density in that area, so that this orbital cannot be expected to bond very well. When the centers of electron density are on the axis common to the two nuclei, the molecular orbitals formed by the overlap of two atomic orbitals are called σ (*sigma*) orbitals, and the bonds are called σ bonds. The corresponding antibonding orbitals are designated σ^* . Sigma orbitals may be formed by the overlap of any of the atomic orbital. However, the two lobes that overlap must have the same sign: A positive s orbital can form a bond only by overlapping with another positive s orbital or with a positive lobe of a p, d, or f orbital. Any σ molecular orbital may be represented as approximately ellipsoidal in shape.

Orbitals are frequently designated by their symmetry properties. The σ orbital of hydrogen is often written ψ_g . The *g* stands for *gerade*. A *gerade* orbital is one in which the sign on the orbital does not change when it is inverted through its center of symmetry. The σ orbital is *ungerade* (designated ψ_u). An *ungerade* orbital changes sign when inverted through its center of symmetry.

In MO calculations, the *linear combination of atomic orbitals* (known as LCAO) generates a wave function from a linear combination of overlapped atomic orbitals. Addition of the atomic orbitals gives the bonding MO:

$$\Psi = c_{\rm A} \Psi_{\rm A} + c_{\rm B} \Psi_{\rm B} \tag{1-1}$$